Acceptance of cosmetic surgery: Personality and individual difference predictors

Viren Swami a,*, Tomas Chamorro-Premuzic b, Stacey Bridges a, Adrian Furnham c

a Department of Psychology, University of Westminster, 309 Regent Street, London W1B 2UW, UK
b Department of Psychology, Goldsmiths, University of London, London, UK
c Department of Psychology, University College London, London, UK

A R T I C L E I N F O
Article history:
Received 7 July 2008
Received in revised form 22 September 2008
Accepted 26 September 2008

Keywords:
Cosmetic surgery
Body image
Personality
Individual differences

A B S T R A C T
This study examined the association between several attitudinal constructs related to acceptance of cosmetic surgery, and participant demographics, personality, and individual difference variables. A sample of 332 university students completed a battery of scales comprising the Acceptance of Cosmetic Surgery Scale (ACSS) and measures of the Big Five personality factors, self-esteem, conformity, self-assessed attractiveness, and demographics. Multiple regressions showed that the predictor variables explained a large proportion of the variance in ACSS factors (Adj. R² ranging between .31 and .60). In addition, structural equation modelling revealed that distal factors (sex and age) were generally associated with acceptance of cosmetic surgery through the mediate influence of more proximate variables (in the first instance, the Big Five personality factors, followed by self-esteem and conformity, and finally self-assessed attractiveness). These results allow for the presentation of a preliminary model integrating personality and individual differences in predicting acceptance of cosmetic surgery.

© 2008 Elsevier Ltd. All rights reserved.

Introduction

Cosmetic surgery refers to a subspecialty that is concerned primarily with the maintenance, restoration, or enhancement of an individual’s physical appearance through surgical and medical techniques. In the Western hemisphere, the number of cosmetic surgery procedures has risen dramatically in the past decade (e.g., Davis, 2003; Rohrich, 2003). In the United States, for instance, 11.7 million cosmetic procedures were performed in 2007, with the vast majority being minimally invasive procedures (American Society for Aesthetic Plastic Surgery, 2008). Moreover, Sarwer and Cerrand (2008) suggest that these statistics underestimate the actual number of procedures being performed, as they do not cover appearance-enhancing treatments performed by non-plastic surgeons.

As discussed by Sarwer and colleagues (Sarwer, Cerrand, & Gibbons, 2007; Sarwer & Magee, 2006; Sarwer, Magee, & Cerrand, 2003), a number of factors may underscore this increase in the popularity of cosmetic surgery. These include the growing importance of physical appearance in contemporary Western culture (Swami, 2007; Swami & Furnham, 2008), which has served to normalise the pursuit of appearance-enhancing behaviours (Swami et al., 2003). Higher disposable incomes among patients, advances in surgical procedures (particularly in terms of safety), and the lower cost of treatments have also served to reduce patient anxiety about cosmetic procedures (Edmonds, 2007). Finally, the past decade has witnessed a dramatic increase in media coverage of cosmetic surgery (see Crockett, Pruzinsky, & Persing, 2007; Sarwer et al., 2003), which has mainstreamed public awareness of such procedures (Tait, 2007).

In line with these developments, there has emerged a relatively large body of work examining psychological aspects of cosmetic surgery. In terms of factors affecting the likelihood of having cosmetic surgery, for instance, the available evidence suggests that women report a greater likelihood of willingness to undergo various cosmetic procedures compared with men (Brown, Furnham, Glanville, & Swami, 2007; Swami, Arteche, Chamorro-Premuzic, Furnham, Stieger, Haubner, et al., 2008), which has been explained as a function of the greater sociocultural pressure on women to attain ideals of physical and sexual attractiveness (Swami, 2007; Swami & Furnham, 2008). This research has also shown that lower self-ratings of physical attractiveness predict higher likelihood of having cosmetic surgery (Brown et al., 2007), and that media exposure may mediate the relationship between participant sex and likelihood of having cosmetic surgery (Swami, Arteche, et al., 2008).

In terms of attitudinal dispositions towards cosmetic surgery, Sarwer et al. (2005) reported that their sample of college women generally held favourable attitudes toward cosmetic surgery as a means of appearance-enhancement. Henderson-King and Henderson-King (2005), however, have argued that participants may...
hold beliefs and attitudes that are accepting of cosmetic surgery and yet show little or no interest in actually having cosmetic procedures. In order to assess attitudes beyond likelihood of having cosmetic surgery, therefore, these authors developed the Acceptance of Cosmetic Surgery Scale (ACSS), a 15-item measure that was found to factor into three components: (1) Intrapersonal, which measures attitudes related to the self-oriented benefits of having cosmetic surgery (e.g., increased satisfaction with appearance); (2) Social, which represents social motivations that influence the decision to have cosmetic surgery (e.g., appearing more attractive to one’s partner), and; (3) Consider, which measures the likelihood of having cosmetic surgery, taking into account factors that may influence the decision-making process (e.g., pain).

In a series of four studies within university settings, Henderson-King and Henderson-King (2005) showed that the ACSS has high internal reliability and test–retest reliability, as well as good divergent and convergent validity. In addition, they reported that women and older participants expressed more positive attitudes on the Intrapersonal subscale and that older participants had more favourable attitudes on the Social subscale. For women, age was found to be a positive predictor of considering cosmetic surgery, but no such relationship was found for men. Other recent work using the ACSS has shown that greater acceptance of cosmetic surgery among college women is associated with their body image experiences, with those who are dissatisfied with their appearance or having greater body image disturbance viewing cosmetic surgery more positively (Cash, Goldenberg-Bivens, & Grasso, 2005). Furthermore, Sperry, Thompson, Sarwer, and Cash (in press) reported that viewership of reality cosmetic surgery television shows was significantly related to acceptance of cosmetic surgery, where the latter was measured using total scores from the ACSS. While these studies have begun the task of delineating attitudes towards cosmetic surgery, it is also possible to extend this research by examining individual difference predictors of such attitudes.

The present study

Our first aim in the present study was to examine the relationship between the ACSS subscales and an individual’s personality, where the latter was operationalised using the Big Five personality framework (McCrae & Costa, 1997). The Big Five is a hierarchical model of personality with five bipolar traits or factors (Agreeableness, Conscientiousness, Emotional Stability, Openness, and Extraversion), which represent personality at a broad level of abstraction (McCrae & Costa, 1997). The Big Five framework has been shown to have strong predictive validity in relation to various real-world outcomes (Chamorro-Premuzic, 2007), including attitudes towards body size (Swami, Buchanan, Furnham, & Tovee, 2008), but it has not been specifically examined in relation to attitudes towards cosmetic surgery.

Even so, there were reasons why we expected the Big Five personality framework to be associated with acceptance of cosmetic surgery. For one thing, previous work has shown that the factors of Emotional Stability are associated with negative appearance evaluation (e.g., Kvalem, von Soest, Roald, and Skolleborg, 2006), appearance orientation (e.g., Davis, Dionne, & Shuster, 2001), dissatisfaction with facial appearance (e.g., Thomas & Goldberg, 1995), and self-objectification (e.g., Miner-Rubino, Twenge, & Frederickson, 2002). Self-objectification in the latter study was also associated with Agreeableness and Openness, whereas Kvalem et al. (2006) reported a significant association between appearance orientation and Extraversion. More generally, the Big Five factors are significantly associated with differences in affective experience (e.g., Mischel & Shoda, 1999), and are, therefore, likely to influence dimensions of body image generally and acceptance of cosmetic surgery specifically.

In addition to the Big Five, we also examined the relationship between the ACSS and participants’ self-rated physical attractiveness, which previous work has shown to be negatively associated with the likelihood of having cosmetic surgery (Brown et al., 2007; Swami, Arteche, et al., 2008). Concurrently, we measured participants’ global self-esteem, which is thought to be negatively associated with the likelihood of having cosmetic surgery (that is, individuals with low self-esteem may be more open to cosmetic surgery as a means of improving global self-perceptions; cf. Figueroa, 2003; Sarwer, 2007; Sarwer, Nordmann, & Herbert, 2000) and may also be linked with low self-ratings of physical attractiveness (cf. Koff, 1998). In the present study, we also examined the association between the ACSS and conformity, which Mehrabian (2005, p. 2) defined as “a characteristic willingness to identify with other and emulate them, to give in to others so as to avoid negative interactions, and generally, to be a follower rather than a leader” and which may be expected to be associated with the Social subscale of the ACSS.

In short then, the present study examined the association between the subscales of the ACSS and participants’ sex, age, Big Five personality factors, self-rated physical attractiveness, self-esteem, and conformity. The data was analysed using correlation and structural equation modelling. Whilst the former method is useful for identifying relationships between two variables, the latter allows for simultaneous testing of several relationships among different variables (including multiple criteria or ‘dependent variables’) and is, therefore, ideal for testing or generating models (Byrne, 2001).

Method

Participants

The participants of this study were 332 (60.5% women, n = 201; 39.5% men, n = 131) university students from a metropolitan university in Greater London (age M = 24.72, SD = 7.51). The majority of participants were of European Caucasian descent (72.6%, n = 241), with smaller groups of Asian (10.5%, n = 35), African Caribbean (10.5%, n = 35), and other descent (6.3, n = 21). In terms of religion, 59.6% of participants were Christians (n = 198), 12.0% were Muslims (n = 40), 7.5% were atheists (n = 25), and 20.8% were of some other religious affiliation (n = 69). Most participants were in a dating relationship (57.5%, n = 191), while others were single (23.5%, n = 78), married (16.9%, n = 56), or of some other marital status (2.1%, n = 7). Finally, most participants reported never having had cosmetic surgery (84.0%, n = 279).

Measures

Acceptance of Cosmetic Surgery Scale (ACSS; Henderson-King & Henderson-King, 2005)

This is a 15-item scale measuring various aspects of an individual’s attitudes about cosmetic surgery and rated on a 7-point scale (1 = strongly disagree, 7 = strongly agree). Three dimensions of such attitudes are measured: (1) Intrapersonal (five items representing attitudes related to the self-oriented benefits of cosmetic surgery; sample item: ‘In the future, I could end up having some kind of cosmetic surgery’); (2) Social (five items measuring social motivations for having cosmetic surgery; sample item: ‘If it would benefit my career, I would think about having plastic surgery’); and; (3) Consider (five items assessing the likelihood that a participant would consider having cosmetic
surgery; sample item: ‘If I could have a surgical procedure done for free I would consider trying cosmetic surgery’). Previous work has shown that the ACSS has high internal consistency, good test–retest reliability after three weeks, and good convergent and discriminant validity (Henderson-King & Henderson-King, 2005). In the present study, Cronbach’s α for the three subscales were: Intrapersonal .92, Social .90, Consider .90.

Ten Item Personality Inventory (TIPi; Gosling, Rentfrow, & Swann, 2003)

This is a brief scale for assessing the Big Five personality facets, which shows adequate convergent and discriminant validity, test–retest reliability, and patterns of external correlates. Participants rated the extent to which a pair of traits (e.g., ‘Extraverted, enthusiastic’) applies to them on a 7-point scale (1 = Strongly disagree, 7 = Agree strongly). Five items are reverse-coded, and two items are averaged to arrive at scores for each of the Big Five personality traits. Cronbach’s α coefficients were as follows: Extraversion .63, Agreeableness .66, Conscientiousness .63, Emotional Stability .60, and Openness to Experience .61. These αs are acceptable given that they were measured using only two items (see Youngman, 1979).

Self-assessed attractiveness (SAA; Swami, Furnham, Georgiades, & Pang, 2007)

Participants were provided with a graphical representation of a normal distribution curve (M = 100, SD = 15) and asked to provides self-estimates of their overall physical attractiveness, overall facial attractiveness, and overall attractiveness of their body weight and body shape. Although the original version of this scale includes a range of items referring to various body parts, the four items used body shape. Although the original version of this scale includes a range of items referring to various body parts, the four items used (see Youngman, 1979).

Conformity Scale (CS; Mehrabian, 2005)

This 11-item scale measures conformity on a 9-point scale (−4 = Very strong disagreement, +4 = Very strong agreement; sample item: ‘I often rely on, and act upon, the advice of others’). A total score is computed by summing participants’ responses to seven positively worded items and by subtracting this value from the sum of their responses to four negatively worded items (α = .79). Previous work has shown that the CS has good test–retest reliability and construct validity (e.g., Mehrabian & Stef, 1995).

Table 1

<table>
<thead>
<tr>
<th></th>
<th>ACSS Intrapersonal</th>
<th>ACSS Consider</th>
<th>ACSS Social</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSS Intrapersonal</td>
<td>M ± SD = 4.41 ± 1.37</td>
<td>−</td>
<td>.84**</td>
</tr>
<tr>
<td>ACSS Consider</td>
<td>M ± SD = 3.89 ± 1.61</td>
<td>−</td>
<td>.58**</td>
</tr>
<tr>
<td>ACSS Social</td>
<td>M ± SD = 2.90 ± 1.35</td>
<td>−</td>
<td>.53**</td>
</tr>
<tr>
<td>Age</td>
<td>M ± SD = 24.74 ± 7.51</td>
<td>.19**</td>
<td>−.11</td>
</tr>
<tr>
<td>Sex</td>
<td>−.00</td>
<td>.13**</td>
<td>−.05</td>
</tr>
<tr>
<td>Extraversion</td>
<td>M ± SD = 10.18 ± 2.50</td>
<td>.07</td>
<td>−.08</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>M ± SD = 11.11 ± 1.82</td>
<td>−.00</td>
<td>−.09</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>M ± SD = 10.49 ± 1.88</td>
<td>−.05</td>
<td>−.37**</td>
</tr>
<tr>
<td>Emotional Stability</td>
<td>M ± SD = 9.05 ± 2.73</td>
<td>.03</td>
<td>−.20**</td>
</tr>
<tr>
<td>Openness</td>
<td>M ± SD = 10.38 ± 2.42</td>
<td>−.42**</td>
<td>−.33**</td>
</tr>
<tr>
<td>Self-esteem</td>
<td>M ± SD = 30.08 ± 3.70</td>
<td>−.03</td>
<td>−.18**</td>
</tr>
<tr>
<td>Conformity</td>
<td>M ± SD = −4.85 ± 13.95</td>
<td>.21**</td>
<td>−.47**</td>
</tr>
<tr>
<td>Self-assessed attractiveness</td>
<td>M ± SD = 101.02 ± 13.42</td>
<td>−.16**</td>
<td>−.34**</td>
</tr>
</tbody>
</table>

N = 332, sex coded: 1 = men, 2 = women.
* = p < .05, ** = p < .001.
Multiple regressions

A series of stepwise multiple regressions were carried out to examine the amount of variance in each of the ACSS factors explained by the other variables. We chose stepwise regressions in order to select the fewest number of variables offered to the model that best describe the occurrence of the outcome. Three regressions were conducted (one for each ACSS factor) and in each regression, age, sex, the Big Five factors, self-esteem, conformity, and self-assessed attractiveness were entered as predictors in the same block. The regression predicting Intrapersonal accounted for 31.1% of the variance, with Openness ($\beta = -0.62, t = 10.85, p < .001, R^2 = .42$), Emotional Stability ($\beta = .42, t = 5.59, p < .001, R^2 = .08$), sex ($\beta = .21, t = 3.76, p < .001, \Delta R^2 = .02$), Extraversion ($\beta = .19, t = 3.63, p < .001, \Delta R^2 = .02$), and self-assessed attractiveness ($\beta = .12, t = 2.07, p < .05, \Delta R^2 = .01$) being retained as significant predictors.

The regression predicting Social accounted for 60.6% of the variance and Emotional Stability ($\beta = .73, t = 16.75, p < .001, R^2 = .23$), conformity ($\beta = .46, t = 9.86, p < .001, \Delta R^2 = .23$), Openness ($\beta = -.42, t = 7.87, p < .001, \Delta R^2 = .06$), age ($\beta = -2.8, t = 7.13, p < .001, \Delta R^2 = .05$), and Conscientiousness ($\beta = -.18, t = 4.01, p < .001, \Delta R^2 = .02$) were significant predictors. Finally, the regression predicting Considerable explained 40.8% of the variance, with Openness ($\beta = -0.63, t = 11.01, p < .001, \Delta R^2 = .19$), Emotional Stability ($\beta = .52, t = 8.34, p < .001, \Delta R^2 = .02$), sex ($\beta = .47, t = 8.71, p < .001, \Delta R^2 = .09$), self-assessed attractiveness ($\beta = -.26, t = 5.41, p < .001, \Delta R^2 = .05$), Agreeableness ($\beta = -.32, t = 5.74, p < .001, \Delta R^2 = .02$), Conscientiousness ($\beta = .25, t = 4.67, p < .001, \Delta R^2 = .02$), and age ($\beta = -1.3, t = 2.48, p < .001, \Delta R^2 = .01$) all emerging as significant predictors.

It is noteworthy that Emotional Stability emerged as a strong predictor of the three ACSS factors despite being uncorrelated with two of these factors and only modestly correlated with the other ACSS Social, which suggests suppressor effects in the regressions. In order to explore a tentative model for integrating the various predictors of ACSS, we next conducted structural equation modelling (SEM) with the data.

Structural equation modelling

SEM was performed using AMOS 4.0 (Arbuckle & Wothke, 1999; Byrne, 2001). Fitness of the model was assessed using the following indices: χ^2 (Bollen, 1989); tests the hypothesis that an unconstrained model fits the covariance or correlation matrix as well as the given model; ideally values should not be significant); Goodness-of-Fit Indicator (GFI; Tanaka & Huba, 1985; a measure of fitness where values close to 1 are acceptable); Parsimony Goodness-of-Fit Indicator (PGFI; Mulaik et al., 1989; a measure of power that is optimal around .50); Comparative Fit Index (CFI; Bentler, 1990; comparison of the hypothesised model with a model in which all correlations among variables are zero, and where values around .90 indicate very good fit); Root-Mean-Square Error of Approximation (RMSEA; Browne & Cudeck, 1993; values of .08 or below indicate reasonable fit for the model); Akaike’s Information Criterion (AIC; Akaike, 1973; gives the extension to which the parameter estimates from the original sample will cross-validate in future samples; Hoelter’s Critical N (CN; Hoelter, 1983; provides the maximum sample size for which a model with same sample size and df would be acceptable at .01 level).

The modified model consisted of a hierarchical path analysis where the three factors of ACSS were treated as inter-correlated, endogenous variables (to the very right of the model). Direct paths to the three endogenous variables were then drawn from self-assessed attractiveness, which, in turn, was hypothesised to be affected by conformity and self-esteem. The two latter variables, in turn, were hypothesised to be affected by all Big Five personality traits, which, in turn, were hypothesised to be affected by sex and age. Thus, the model progressively moved from more distal exogenous variables (to the left) to less distal variables (to the right).

Although the model is predictive rather than causal, from a theoretical standpoint, sex and age are justified as exogenous variables as they are not influenced by any of the other variables. On the other hand, the Big Five personality factors are more general and ‘trait-like’ than self-esteem and conformity (which are arguably more influenced by situational factors, though they still have a trait-like basis). With regards to self-assessed attractiveness, we decided to treat this variable as less distal than self-esteem (a more over-arching self-construct) and conformity, primarily to assess whether self-assessed attractiveness may explain some of the effects of self-esteem and conformity on the ACSS factors. Finally, the ACSS factors were considered endogenous not only in light of the aims of the current study, but also as these attitudinal variables can be expected to be much more situational and less trait-like than the variables we treated as predictors.

The hypothesised model did not fit the data well: $\chi^2 (df = 49, N = 332) = 1330, p < .01, GFI = .70, CFI = .50, PGFI = .38, RMSEA = .28$ (low = .26, high = .29), AIC = 1414.3, CN = 14. Thus modifications were made in order to improve fit. In line with the modification indices, the Big Five were allowed to inter-correlate, and non-significant estimates were eliminated from the model. In addition, conformity and self-esteem were allowed to inter-correlate, and direct paths from more distal to endogenous variables (e.g., from sex to the ACSS factors, from the Big Five factors to the ACSS factors, and from self-esteem to the ACSS factors) were drawn in accordance to the modification indices. The modified model (shown in Fig. 1) fitted the data well: $\chi^2 (df = 17, N = 332) = 46.7, p < .01, GFI = .98, CFI = .99, PGFI = .34, RMSEA = .06$ (low = .04, high = .09), AIC = 194.7, CN = 14. Although the χ^2 value was significant, this is to be expected even in well-fitting models (Byrne, 2001).

Direct paths into the endogenous variables (ACSS factors) were found for several variables. Thus, women, more conscientious, less agreeable, less open, and more emotionally stable individuals, as well as those who rated themselves lower in attractiveness, were more likely to consider cosmetic surgery. Of these factors, Openness, in particular was a strong predictor of the ACSS Consider factor. ACSS Social, on the other hand, was predicted by conformity (the main single predictor), followed by Emotional Stability and Conscientiousness (a negative predictor). Therefore, the less neurotic, conscientious, and more conformist an individual, the more likely she or he is to emphasise social motivations for having cosmetic surgery. Finally, the Intrapersonal factor of the ACSS was predicted by Openness (negatively) and, to a lesser extent, Emotional Stability, indicating that the less open and more emotionally stable an individual, the more likely she or he holds strong attitudes related to the self-oriented benefits of cosmetic surgery.

Discussion

The results of the present study extend previous work with the ACSS by showing that acceptance of cosmetic surgery is reliably (albeit moderately) associated with participants’ sex, age, Big Five personality factors, self-esteem, conformity, and self-assessed attractiveness. Overall, these variables explained a substantial portion of the variance in the ACSS factors (particularly for Social), and significantly predicted each ACSS factor (though not always in the same manner). Although it is important to note that this is a
preliminary attempt at integrating predictors according to their more-or-less distal position with respect to the ACSS factors, a number of conclusions are worthy of further comment.

First, our results showed that women were more likely than men to consider having cosmetic surgery, which is consistent with previous work in which participants were asked to rate their likelihood of having various cosmetic procedures (Brown et al., 2007; Frederick, Lever, & Peplau, 2007; Swami, Arteche, et al., 2008). As discussed elsewhere, this sex difference may reflect the greater sociocultural pressure that women experience to live up to idealised images of physical perfection (Swami, 2007; Swami & Furnham, 2008). Our results also suggest that individuals who rated themselves lower in physical attractiveness were more likely to consider cosmetic surgery, which is consistent with previous work (Brown et al., 2007; Swami, Arteche, et al., 2008).

However, our results also suggest that more conscientiousness, less agreeable, less open, and more emotionally stable individuals were more likely to consider cosmetic surgery, thus centrally implicating the Big Five personality framework in such decisions. Openness to Experience, in particular, was a strong negative predictor of considering having cosmetic surgery. Previous work has reported a positive association between Openness and positive self-evaluations of appearance (Kvalem et al., 2006). Extrapolating from this evidence, it might be suggested that Closed individuals have a more negative appearance evaluation (possibly as a function of their lower likelihood of accepting unconventional societal norms of attractiveness; cf. Swami, Buchanan, Furnham, & Tovée, 2008), which increases their likelihood of wanting to have cosmetic surgery to enhance their appearance. It is also important to note that, in the present study, low self-esteem was not correlated with higher likelihood of having cosmetic surgery. Rather, self-esteem was associated with self-assessed attractiveness, which in turn was negatively associated with greater likelihood of considering cosmetic surgery.

Our results also showed that the Social factor of the ACSS, which measures social motivations for wanting to have cosmetic surgery, was strongly predicted by conformity. This is perhaps not surprising, given that the Conformity Scale measures the extent to which an individual is willing to emulate and give in to others so as to avoid any negative interactions. Thus, this association may be tapping into conforming individuals’ greater likelihood of accepting cosmetic surgery in order to satisfy their partners or other close relationships. Moreover, our results also suggest that the Big Five personality factors of Conscientiousness and Emotional Stability help explain more positive social attitudes towards cosmetic surgery. It may be the case more neurotic individuals are anxious about the consequences of cosmetic surgery and focus on potential negative effects (e.g., pain). Likewise, high conscientious individuals may be more wary of cosmetic surgery, perhaps stemming from their higher degree of carefulness, thoroughness, and deliberation.

Finally, our results suggest that less open and more emotionally stable individuals had a greater likelihood of accepting cosmetic surgery in order to maximise its self-oriented benefits. As suggested above, Closed individuals may maintain more negative evaluations of their appearance, which in turns leads to a greater acceptance of cosmetic surgery if it is able to enhance their appearance. Emotional stability, on the other hand, may be linked with the Intrapersonal factor because neurotic individuals are more likely to experience negative affect associated with negative self-evaluations of appearance (see also Kvalem et al., 2006).

All in all, our results suggest a complex model linking participant demographics, personality, and a number of individual difference variables with acceptance of cosmetic surgery as measured on the ACSS. As can be seen in Fig. 1, the Intrapersonal factor of the ACSS was strongly affected by Openness and modestly affected by Emotional Stability. The Social factor was strongly affected by Emotional Stability and Conformity, and to a lesser degree, Conscientiousness. Most notably, consideration of cosmetic surgery was affected by 6 of the 10 predictors (including four of the Big Five factors), namely Openness, sex, self-assessed attractiveness, Agreeableness, Emotional Stability, and Conscientiousness. In sum, these results indicate that most of the variance in ACSS factors was explained by the Big Five, with all traits except Extraversion affecting one ACSS factor or more.
It is important to bear in mind a number of limitations to the present study. First, although our results generally mirror findings from community samples (e.g., Brown et al., 2007; Swami, Arteche, et al., 2008), it is nevertheless the case that our reliance on university students limits the generalisability of our findings. Second, it will be important to replicate the present work more reliable measures of the Big Five personality framework, such as Costa and McCrae’s (1992) revised NEO personality inventory (NEO-PI-R), as this may reveal more conclusively which aspects of personality are associated with acceptance of cosmetic surgery. Similarly, it would be useful to further explicate the relationship between self-esteem and acceptance of cosmetic surgery, given possible associations between self-esteem and narcissism, and between narcissism and interest in cosmetic surgery.

Third, we have not fully examined the relationships between acceptance of cosmetic surgery and constructs of body image. Previous work, for example, has shown that attitudes about cosmetic surgery, as measured using the Cosmetic Surgery Attitudes Questionnaire, were predicted by greater psychological investment in physical appearance and greater internalisation of mass media images of physical beauty (Sarwer et al., 2005). In a similar vein, while we have focused on a number of relevant variables to acceptance of cosmetic surgery, our study in no way exhausts the list of potential variables that could be included in a study of this type. For instance, future work may wish to include such factors as media exposure, vicarious experience of cosmetic surgery, and perfectionism, which previous studies have found to be associated with the likelihood of having cosmetic procedures (Brown et al., 2007; Delinsky, 2005; Sherry, Hewitt, Flett, & Lee-Baggy, 2007; Swami, Arteche, et al., 2008).

These limitations notwithstanding, our results suggest that any model attempting to predict acceptance of cosmetic surgery must include individual difference variables, particularly personality. Specifically, when considering motivations for surgery, cosmetic surgeons should consider the confluence of patients’ personalities in addition to factors such as sociocultural pressure, post-operative expectations, and negative body image. Given the phenomenal increase in the number of cosmetic surgery procedures, a fuller understanding of the influence of personality may allow surgeons to more accurately assess the suitability of patients for surgery. Further research in this area may lead to a better understanding of the psychological aspects of cosmetic surgery, as well as strengthen the basis for the promotion of healthier body image.

References